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Families of motions of a system of rigid bodies that include collisions with arbitrarily small (including 

zero) initial velocity of approach are considered. The formal description of such collisions using the 

stereomechanical axiom leads to dynamical paradoxes. Another solution to the problem of grazing 

collision is proposed, based on the visco-elastic model of contact stresses. 

1. INTRODUCTION 

We specify generalized coordinates q = cqo, ql, . . . I (I,) such that LJ~ is the distance between 
the colliding pair of elements. Then the quantities q,, . . . , q, are arbitrary whereas the first 
coordinate is constrained by the single-sided constraint q0 2 0. In the domain q. > 0 the motion 
is described by the equations 

(1.1) 

To describe collisions it is usual to use the formally-axiomatic stereomechanical collision 
theory [l], where one ignores the collision duration o and also the role of “active” forces Q 
compared with the contact stresses in the formation of a collisional impulse. The stereo- 
mechanical equations are 

q* =q-, 4’ = U(q_,i-) (1.2) 

where the minus and plus signs correspond to the start and end of the collision, and U is some 
map from the half-space li, ~0 into the half-space 4 >O. In particular, for a frictionless 
collision, with a suitable choice of generalized coordinates [2] the map U has the form 

ilo+ = -lcij$ 4jf = ;1j (j = 1,2,...,n) (1.3) 

where K E [O, l] is the Newtonian coefficient of restitution with respect to the velocity. 
A contradiction appears in Eqs (1.2) for motions in which the constraint is touched. Suppose 

that at some time t = I * the conditions 

q*=o, &=O, F,>o (1.4) 

are satisfied. 
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The inequality in (1.4) ensures the weakening of the single-sided constraint: yi, >O when 
t =I *. In this case arbitrarily small changes to the initial conditions can have two kinds of 
consequence: either the bodies do not come in contact at all near the time f :I I*, or they collide 
with an arbitrarily small initial velocity. We will discuss the two situations. 

1. For rough bodies not possessing spherical symmetry. a “grazing” collision is possible: the 
magnitude of the collision impulse does not vanish when &(t*) --$ -0 13. 41, Here the motion 
does not depend continuously on the initial conditions IS]. 

2. For bodies with totally smooth surfaces the collision is described by Eys t 1.3). Suppose 
that the system has a T-periodic motion q*(t) that includes a grazing collision (1.4). To this 
motion there corresponds a fixed point of the mapping of the phase space into itseil’ along 
integral curves between times f = t * and t = I *+ 7’. In a neighbourhood of the fixed point thr~ 
mapping has an unbounded derivative as T+ 0 [6]. Such a situation is outside the framework 
of linear theory and is known as C-bifurcation 171. In C-bifurcation the multipliers art” 
discontinuous functions of the parameters and a general approach to its invcst~gation has nr?r 
yet been developed. (Various special cases 17-91 have been studied.} 

A satisfactory solution to these problems based on the stereomechanical equations (I .2; 
does not appear to be possible, Below we present a more appropriate grazing collision model 
and use it to solve these problems. 

2. INVESTKGATION OF THE GRAZING COLLISION 01: A PAR1‘IC’I.E WITEl A 
VISCO-ELAS’FIC MEDIUM 

We suppose that the contact stresses are determined by the properties of a Kekin-Voight 
medium: the inequality qO < 0 is possible, and it is accompanied by the appearance of a reaction 
4 linear with respect to (lo and 4, [l]. The equations of motion in the domain (I,, < 0 have the 
form 

+o=_~2q,-2a&,+Fb, $=F; (j=I,...,n),~~E(o,l) (2.1 ) 

where the value of the coefficient M, describing the contact stiffness, is large The collision 
corresponds to the part of the trajectory of system (2.1) with initial conditions 

(2.21 

over the interval t e(t*, t*+?), where z is the smallest positive root 01’ the equation 
qo(t * +z) = 0. 

An analytic solution to system (2.1) is not in general possible, but approximate solutions 
enable us to draw conclusions about the collision mechanism. A case where the quantity II was 
fixed was investigated. and it was shown [ 10) that the estimates 

z=rc6-‘M-‘+o(M-‘),qo(t*+z)=ruc+O(M-’) ( p,::; 

~i(t*i-z)=$+O(M-l) (i=I,...,n) 

&+a*)% lc=exp(-aaI6) 

hold irrespective of the form of the function F. 
Relations (2.3) in the limit as M + 0~1 become the stereomechanical equations (1.3). and this 

verifies the use of model (2. I) in describing collisions. 
In the neighbourhood of a grazing condition the values of u can he as small as desired, which 

corresponds to another limiting case of the solution: II ++O and fixed n/r. We note that 

according to (1.4) 
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is positive; we choose II to be so small that Mu/C,, = x + 1. Using the initial conditions (2.2) the 
solution to the first of Eqs (2.1) can be represented as a Taylor series 

q(#+Ar)= -uAf + % (Co + 0(mw2 + wo2 (2.4) 

Equating the right-hand side of (2.4) to zero, we find the duration z of the collision, and then 
the final values of the variables 

z=2u/co+0(u*), ~~(‘*+z)=u+o(u) (2.5) 

&+%)=pp+O(u) (i=l,...,tl) 

Comparing the two groups of equations (2.3) and (2.9, we note properties of collisions with 
small initial velocities of approach: firstly, the duration of such collisions decreases with 11, 
secondly, the coefficient of restitution K is close to unity, and thirdly, as u+O the dominant 
component in the first formula of (2.1) is the C,, term, that is insignificant in relations (2.3). 

This last property is obtained by analysing formula (2.4) 

q&+Atp -g42c~‘+o(u2), cj&*+Af)B -_u 

-M2qo -2aM& c Co(2ax+j$x2+o(x2)), F, =C, + O(x) 

Remark. 1. If the dependence of the reaction & on q and i differs from (2.1), but R, -+O as qo, 
& + 0, then for sufficiently small u the collision is described by the same formulae (2.5) because in their 

derivation the explicit form of the function R, is not used. 

2. Relations (2.5) also remain valid for collisions between bodies with rough surfaces. Here Eq. (2.1) 

becomes more complicated because of the presence of grazing reaction components [ll]. Nevertheless, as 

in the previous remark, all estimates and the basic conclusion remain true: for sufficiently small u the 
motion is basically determined by the active forces and not by the reaction. 

In this model the first of the paradoxes noted in the Introduction is 
collisional impulse vanishes as 1~ -_j + 0. 

3. ANALYSIS OF THE C-BIFURCATION 

resolved: in all cases the 

We will now solve the second of the problems posed in the Introduction. We first suppose 
that rz=O, i.e. the given mechanical system has one degree of freedom. We represent the 
equations of motion in the form (the index is omitted) 

0 
ij=F+R,F=F(p,t,q,cj),R= 

c?‘O 
-M2q-2c&j, qco (3.1) 

where p is a parameter. When p = 0 system (3.1) has a T-periodic solution qt (t), including a 
grazing collision (1.4) and, possibly, other collisions described by (1.3). Solutions of system 
(3.1) define the point mapping a,, :(4(P), Q(t*)) -+ (q(t *+T), Q(t*+T)), with @JO, 0) =(0, 0). 
Because the reaction R is continuous at the origin, the mapping a0 is differentiable 

R&wi) = x0 
4 I I 0 

+O(q2+$) 
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In this formula the defining matrix X, is equal to the 
matrix of solutions X(t*. I) of the variational equations 

value at I = f * + 7. of the fundamental 

- * 0 1 
x0 ,r>= F; $ I II X(t’,t), x(t*,r’) = E2 (3.2) 

and here, at the times t, when the periodic motion 11(:(t) undergoes collisions, the matrix 
X{t*, r) changes abruptly according to the formula 1121 

If unity is not one of the eigenvalues of the matrix X,. then according to the general theory 
of point mappings (131, for sufficiently small u the mapping @, has a fixed point which 
becomes the origin as p--+0. In the first approximation the coordinates (Q’u). TJ(~)) of this 
point are found from the equation 

In the general case (15(u)/& f 0, and the quantity QL) changes sign in the neighbourhood 
of zero. This gives the essence of a C-bifurcation: for u < 0 the motion 9: (t) departs from 
collision in the neighbourhood of the time I*, while for p>O it experiences collisions with an 
initial veIocity that vanishes as u + + 0 (or vice versa). 

The evolution of the motion q:(t) in the regular domain u <O is described by the usual 
theory, because in formula (3.3) the denominator does not vanish. In the region p < 0 where 
grazing collisions exist one cannot use this formula because 1>,, + M as Q* -+ 0. One can 
instead directly vary system (3.1) in the d~~rnain q < 0. Equation (3.2) then acquires the form 

(II 0 1 
k(t’A = _M2 

-2ah4 H 1 

+ O(1) XQ’J) 

where the quantity 0(l) is bounded as 44 -+ 00. Using formula (2.5) for the monodromy matrix 
when u > 0 we obtain 

i3.4j 

We denote by p,,,(u) the eigenvalues of the matrix X, (multipliers) and assume that 
I p,,(O) I < 1 (i.e. the periodic motion is asymptotically stable for u s 0). For sufficiently small 
values of p > 0, such that x = O(M-I), the determinant of the matrix X, is equal to p,(O)~~(O)~ 
and its trace is equal to -p,(O)- p?(O)- Mx.u,~. where .u,(i. j = 1, 2) are the elements of the 
matrix X0. As x increases one of the multipliers remains inside the unit circle, and the second 
leaves it along the real axis, becoming plus or minus one depending on the sign of +. The 
following assertion therefore holds. 

Theorem. If x,~ <: 0, then the C-bifurcation is of the “saddle-node” type: the given periodic 
motion merges with some unstable motion of the same period and both vanish. In the x,, >(I 
case this bifurcation leads to a sequence (finite or infinite) of period doublings. 
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Remark. 1. If any period-doubling bifurcation is subcritical. then it is the last one in the sequence 

referred to above. Supercritical bifurcations form an infinite sequence, leading to chaos at u = O(Mq). In 

both cases stable periodic or subperiodic motions are not preserved. 
2. The xi2 = 0 case is singular: a stable periodic motion q;(t) can be preserved under a C-bifurcation 

[12]. Moreover, for values of x,~ close to zero, a C-bifurcation may interact with another “saddle-node” 
bifurcation [14]. As a result, a new stable periodic motion is generated, which turns into the original one 
as x,* -30. 

in the general case n > 0, by analogy with formula (3.4), for small values of p > 0 the matrix 
X, is multiplied by the matrix 

As l.t increases from zero the multipliers p#)(j = 1, 2, . . . , 2n + 2) vary continuously and the 
C-bifurcation decomposes into simpler types. Alongside the “saddle-nodes” and “forks” 
considered above, here we also have the possibility of a Hopf bifurcation, as a result of which a 
family of quasi-periodic motions is created [15]. As u increases further these families are in 
general disrupted and the system becomes chaotic. 

4. EXAMPLE OF A C-BIFURCATION 

Consider the forced oscillations of a linear oscillator with a stop (Fig. 1). 

g+2k4+c2q=Q(~,t),q~0, ks0 

Q(u,t)=c2(1-p)+(l-c2)cost+2ksint 

(4.1) 

In this problem the use of Eq. (4.1) means that the barrier S is replaced by a spring P of high 
rigidity, fixed to the right-hand wall [16]. For pc0 the system has the stable collisionless 
motion 4: (t) = 1 -CL- cost of period T = 21c, and when u = 0 this motion includes grazing 
collisions at I = 0, *T, f2T, . . . . 

The general solution of system (4.1) for 4 > 0 has the form 

q(t) = q;(t)+ C,& + c2ea2 

where h,,* are roots of the characteristic equation 

(4.2) 

Fig. 1. 
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h* +2kh+c* =0 

The matrix X, and its eigenvalues are 

1 

I 

Q, - hP2 

x0 - x, -x, o*cp, -p*) 

P2 - P2 
-- 

h,P, --LIP, II 

pl,* =exp(hi,,T), x1,2 =(P2 -PI)/@* --AI) 

We shall depict the periodic motions in the (u, q,,) plane, where q,,,, is the minimum value 
of the coordinate in a neighbourhood of the times t = 0, +T. t2’T. . . . A motion of period 7 
corresponds to one point on this plane, a motion of period 2 T to a pair of points with the same 
abscissa, etc. Possible C-bifurcation scenarios are shown in Fig. 2, where the continuous lines 
correspond to stable motions, and the dashed lines to unstable ones: (a) is a “saddle-node”. (b) 
is a subcritical “fork”, (c) is a supercritical plus subcritical “fork”, and (d) is a cascade of 
period-doublings. The theorem proved above enables us to identify the first of these cases, and 
the period-doubling type can be determined by the presence of periodic motions with 
collisions (1.3) when u < 0. 

In case (a) T-periodic motions exist with one collision per period, i.e. the conditions 

q(ro)=q(to+T)=O, &)=-K&+T)>O 

are satisfied. 

(4.3) 

Fig. 2. 
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to+T to*zr to &VT t&T b+7T t 

Fig. 3. 

By (4.2) system (4.3) is linear in C,,*. Eliminating these constants, we obtain 

If P < 0, then q,*(f,,) >O and the sign of &) is opposite to the sign of the element x1* of 
matrix X,,. Consequently, case (a) arises under the condition x1, c 0, which corresponds to the 
assertion of the theorem. 

In case (b) when P c 0 a 2 T-periodic motion exists with one collision per period, a typical 
graph being shown in Fig. 3(a). By analogy with Eqs (4.3) we form the system 

d~o)=4(~0+2n=o, q(tl)+T)>O, &)=-_K41(fo+2T)>O 

which can be transformed to the form 

q;(r,)(l - p; )(I - p; )K(l+ K)-‘(A, - h,)(P; -P:)-’ ’ 0 

q;(r,)(l-P,)(I-P,)(P, +pJ <o 

(4.4) 

In case (c) there is a 4T-periodic motion with two collisions per period, schematically shown 
in Fig. 3(b). The conditions for it to exist are as follows: 

q(ro)=q(r, +3T)=0,q’(r,+3T)=q’(ro+4T)=0, q(ro+T)>O 

q(ro + 277 > 0, tj(ro I= -_K4’(ro + 4T) > 0, $(r, + 377 = -nj(r, + 377 > 0 

q’(r) =q;(r)+Ci ebl’ +C2 thr 

from which we obtain 

4;(ro)(h, -~2)(~$-p3-’ >O, 4;(ro)[1-(1+p,)(l+p2)i<0 (4.5) 

One can similarly establish conditions under which C-bifurcations reduce to two super- and 
one subcritical “fork”, etc. 

Relations (4.3)-(4.5) have a simple interpretation in terms of eigenvalues. If the h,, are real, 
then the differences (h, -A,) and (p, - p,) have the same sign, because none of these’groups of 
conditions is satisfied. In this case C-bifurcation leads to a doubling cascade (Fig. 2d), which is 
confirmed by numerical modelling [17]. 

If the numbers h, and h, are complex-conjugate, h,, =VfiW, V ~0, W ~0. then 
p,,* = e”(cos W + _isinW). Cases with the following values were investigated: (a) sinW ~0, (b) 
sinW>O, sin2Wc0, (c) sinW>O, sin2W>O, sin3W<O. 

One can draw the overall conclusion that for values of k > c the oscillator (4.1) goes through 
a period-doubling cascade as a result of C-bifurcations. If however k < c, then stability is lost as 
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a result of “saddle-node” bifurcation or subcritical period-doubling (which can be preceded by 
several supercritical doublings). 

This research was performed with financial support from the Russian Fund for Fundamental 
Research (993-013-17228). 

REFERENCES 

I. COLDSMITH W.. Impnct. The Theory md Physicnl Bdznviottr of Colliding Sol&. Edward Arnold, London, 1960. 

2. IVANOV A. P. and MARKEYEV A. P., System dynamics with single-sided constraints. Prikl. Mot. Mekk. 48, 4, 
632-636.1984. 

3. ROUTH E. J., Dyncrrnics of N System of Rigid Bodies. Vol. 1. Macmillan, London, 1882. 
4. BOLOTOV E. A.. The collision of two bodies under the action of friction. Zrv. Mosk. Ztrzh. UchiIis/tc/tclra 2 2, 43-55. 

1908. 

5. PAINLEVC P., Sur les lois du frottement de glissement. Acnd Sci. 141, 401+5,190.5. 

6. NORDMARK A. B.. Non-periodic motion caused by grazing incidence in an impact oscillator. J. So~rlrl Vihr. 145, 

2,27Y-297,199 1. 

7. FEIGIN M. I.. Period-doubling of oscillations during C-bifurcations in piecewise-continuous systems. Prikl. Mot, 

Mekh. 34, 4,%146Y, 1970. 

8. FEIGIN M. I., The creation of families of subharmonic regimes in piecewise-continuous systems. Prikl. Mot. Mekh. 

38,5,810-818,1Y74. 

9. FEIGIN M. 1.. The behaviour of dynamical systems near boundaries of regions of existence of periodic motions. 

Prikl. Mot. Mekh. 41, 4.628X136,1977. 

10. KOZLOV V. V., A constructive method for justifying the theory of systems with non-confining constraints. Priki. 
Mat. Mekh .5& 6,8834Y4, 1988. 

11. IVANOV A. P., A constructive model of a frictional collision. Prikl. Mar. Mekh. 52, 6,895-YOl, 1988. 
12. IVANOV A. P., Analytical methods in vibroshock system theory. Prikl. Mnr. Mekh. 57, 2,5-21, 1993. 

13. NEIMARK Yu. I., The point-mapping method in the non-linear theory of oscillations. 2. Izv. Vu;. Radiofizikn l, 2. 

95-117,1958. 
14. IVANOV A. P., Stabilization of an impact oscillator near grazing incidence owing to resonance. J. Sou& Vibr. 162 

3,562-565.1993. 

15. MARSDEN J. E. and MCCRACKEN M., The Hopf Bifurcntiort nnd ifs Applicntiotw. Springer, New York, 1976. 

16. SHAW S. W. and HOLMES P. J., A periodically forced piecewise linear oscillator. J. Sound Vibr. 90, 1, 12Y-155. 

1983. 
17. NORDMARK A. B., Effects due to low velocity impact in a mechanical oscillator.blf. J. Brfurcrrtiou md Chnos 2 3. 

597-605,1992. 

Iimslared by R.i..%. 


